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Abstract

This paper is devoted to the study of the long wave approximation for water waves
under the influence of the gravity and a Coriolis forcing. We start by deriving
a generalization of the Boussinesq equations in 1D (in space) and we rigorously
justify them as an asymptotic model of the water waves equations. These new
Boussinesq equations are not the classical Boussinesq equations. A new term due
to the vorticity and the Coriolis forcing appears that can not be neglected. Then,
we study the Boussinesq regime and we derive and fully justify different asymptotic
models when the bottom is flat : a linear equation linked to the Klein-Gordon
equation admitting the so-called Poincaré waves; the Ostrovsky equation, which is
a generalization of the KdV equation in presence of a Coriolis forcing, when the
rotation is weak; and finally the KdV equation when the rotation is very weak.
Therefore, this work provides the first mathematical justification of the Ostrovsky
equation. Finally, we derive a generalization of the Green-Naghdi equations in 1D
in space for small topography variations and we show that this model is consistent
with the water waves equations.

1 Introduction

We study the motion of an incompressible, inviscid fluid with a constant density ρ and no
surface tension under the influence of the gravity g = −gez and the rotation of the Earth
with a rotation vector f = f

2ez. We suppose that the seabed and the surface are graphs
above the still water level. The horizontal variable is X = (x, y) ∈ R2 and z ∈ R is the
vertical variable. The water occupies the domain Ωt := {(X, z) ∈ R3 , − H + b(X) <
z < ζ(t,X)}. The velocity in the fluid domain is denoted U = (V,w)t where V is the
horizontal component of U and w its vertical component. The equations governing such
a fluid are the free surface Euler-Coriolis equations(1)∂tU + (U · ∇X,z) U + f×U = −1

ρ
∇X,zP − gez in Ωt,

div U = 0 in Ωt,

(1)

with the boundary conditions

∗IMB, Université de Bordeaux. Email : benjamin.melinand@math.u-bordeaux.fr
1We consider that the centrifugal potential is constant and included in the pressure term.
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P|z=ζ = P0,

∂tζ −U ·N = 0,

Ub ·Nb = 0,

(2)

where P0 is constant, N =

(
−∇ζ

1

)
, Nb =

(
−∇b

1

)
, U =

(
V
w

)
= U|z=ζ and Ub =(

Vb

wb

)
= U|z=−H+b.

Influenced by the works of Zakharov ([37]) and Craig-Sulem-Sulem ([8]), Castro and
Lannes in [5] shown that we can express the free surface Euler equations thanks to the
unknowns

(
ζ,U�,ω

)
(2) where

U� = V + w∇ζ,

and ω is the vorticity of the fluid. Then, they gave a system of three equations on
these unknowns. In [26] we proceeded as Castro and Lannes and, taking into account
the Coriolis force, we got the following system, called the Castro-Lannes system or the
water waves equations,

∂tζ −U ·N = 0,

∂tU�+∇ζ+1

2
∇
∣∣U�

∣∣2−1

2
∇
[(

1 + |∇ζ|2
)

w2
]
+ω ·NV⊥+fV⊥ = 0,

∂tω+(U ·∇X,z)ω= (ω · ∇X,z) U+f∂zU,

(3)

where ω = ω|z=ζ and U =

(
V
w

)
= U[ζ, b](U�,ω) is the unique solution in H1(Ωt) of
curl U = ω in Ωt,

div U = 0 in Ωt,

(V + w∇ζ)|z=ζ = U�,

Ub ·Nb = 0,

(4)

and with the following constraint

∇⊥ ·U� = ω ·N. (5)

Our principal motivation is the study of the long waves or Boussinesq regime. Hence, we
nondimensionalize the previous equations. We have six physical parameters in our prob-
lem : the typical amplitude of the surface a, the typical amplitude of the bathymetry
abott, the typical longitudinal scale Lx, the typical transverse scale Ly, the character-
istic water depth H and the typical Coriolis frequency f . Then we can introduce five
dimensionless parameters

2In fact, Castro and Lannes used the unknowns
(
ζ, ∇

∆
·U�,ω

)
. But the unknowns

(
ζ,U�,ω

)
are

better to derive shallow water asymptotic models.
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ε =
a

H
, β =

abott
H

, µ =
H2

L2
x

, γ =
Lx
Ly

and Ro =
a
√
gH

HfLx
.

The parameter ε is called the nonlinearity parameter, β is called the bathymetric pa-
rameter, µ is called the shallowness parameter, γ is called the transversality parameter
and Ro is the Rossby number. Then, we can nondimensionalize the Euler equations (1)
and the Castro-Lannes equations (3) (see Part 1.2).

We organize our paper in four parts. In Subsection 1.2, we nondimensionalize the Castro-
Lannes equations (see System (14)) and we give in Subsection 1.3 a local wellposedness
result on these equations by taking into account the dependence on the dimensionless
parameters. Section 2 is devoted to derive a generalization of the Boussinesq equations
in 1D under a Coriolis forcing and to fully justify it. The Boussinesq equations are
obtained under the assumption that µ is small, ε, β = O(µ) (Boussinesq regime) and
by neglecting all the terms of order O(µ2) in the nondimensionalized Euler equations or
the water waves equations (see for instance [1] in the irrotational framework). It is a
system of two equations on the free surface ζ and the vertical average of the horizontal
component of the velocity denoted V = (u, v)t (defined in (22)). Our Boussinesq-
Coriolis equations are a system of three equations on the surface ζ, the average vertical
velocity V and the quantity V] = (u], v])t (defined in (29)) which is introduced to catch
interactions between the vorticity and the averaged velocity. These equations are the
following system

∂tζ + ∂x ([1 + εζ − βb]u) = 0,(
1− µ

3
∂2x

)
∂tu+ ∂xζ + εu∂xu−

ε

Ro
v +

ε

Ro
µ

3
2

1

24
∂2x
v]

h
= 0,

∂tv + εu∂xv +
ε

Ro
u = 0,

∂t
V]

h
+ εu∂x

V]

h
+

ε

Ro

V]

h

⊥

= 0,

where h = 1+εζ−βb. Then, in Section 3 we derive and fully justify different asymptotic
models in the Boussinesq regime when the bottom is flat. We first derive in Subsection
3.1 a linear system (System (38)) linked to the Klein-Gordon equation admitting the
so-called Poincaré waves. Then, in Subsection 3.2 we study the Ostrovsky equation

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
=

1

2
k.

This equation, derived by Ostrovsky ([27]), is a generalization of the KdV equation
in presence of a Coriolis forcing. We offer a rigorous justification of the Ostrovsky
approximation under a weak Coriolis forcing, i.e ε

Ro = O(
√
µ). Notice that this work

provides the first mathematical justification of the Ostrovsky equation. In Subsection
3.3 we fully justify the KdV approximation (equation (50)) when the rotation is very
weak, i.e when ε

Ro = O(µ). Finally, in Section 4 we derive a generalization of the Green-
Naghdi equations (62) in 1D under a Coriolis forcing with small bottom variations and we
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show that this system is consistent with the water waves equations. The Green-Naghdi
equations are originally obtained in the irrotational framework under the assumption
that µ is small and by neglecting all the terms of order O(µ2) in the nondimensionalized
Euler equations or the water waves equations (see for instance [32] or Part 5.1.1.2 in [17]
for a derivation in the irrotational framework). These equations were generalized in [4]
in the rotational setting but without a Coriolis forcing. We add one in the paper.

1.1 Notations

- If A ∈ R3, we denote by Ah its horizontal component.

- If V =

(
u
v

)
∈ R2, we define the orthogonal of V by V⊥ =

(
−v
u

)
.

- In this paper, C (·) is a nondecreasing and positive function whose exact value has no
importance.

- Consider a vector field A or a function w defined on Ω. Then, we denote A = A|z=εζ ,
w = w|z=εζ and Ab = A|z=−1+βb, wb = w|z=−1+βb.

- If s ∈ R and f is a function on R2, |f |Hs is its Hs-norm, |f |2 is its L2-norm and |f |L∞
its L∞(R2)-norm.

- The operator ( , )2 is the L2-scalar product in R2.

- If f is a function defined on R2, we denote ∇f the gradient of f .

- If w is a function defined on Ω, ∇X,zw is the gradient of w and ∇Xw its horizontal
component.

- If u = u(X, z) is defined in Ω, we define

u(X) =
1

1 + εζ − βb

∫ εζ(X)

−1+βb(X)
u(X, z)dz and u∗ = u− u.

1.2 Nondimensionalization and the Castro-Lannes formulation

We recall the five dimensionless parameter

ε =
a

H
, β =

abott
H

, µ =
H2

L2
x

, γ =
Lx
Ly

and Ro =
a
√
gH

HfLx
. (6)

We nondimensionalize the variables and the unknowns. We introduce (see [17] or [26]
for instance for an explanation of this nondimensionalization)

x′ =
x

Lx
, y′ =

y

Ly
, z′ =

z

H
, ζ ′ =

ζ

a
, b′ =

b

abott
, t′ =

√
gH

Lx
t,

V′ =

√
H

g

V

a
, w′ = H

√
H

g

w

aLx
and P ′ = P

ρgH
.

(7)
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In this paper, we use the following notations

∇γ = ∇γX′ =

(
∂x′

γ∂y′

)
, = ∇µ,γX′,z′ =

(√
µ∇γX′
∂z′

)
, curlµ,γ = ∇µ,γX′,z′× , divµ,γ = ∇µ,γX′,z′ · . (8)

We also define

Uµ =

(√
µV′

w′

)
, ω′ =

1

µ
curlµ,γUµ, Uµ =

(√
µV′

w′

)
= Uµ

|z′=εζ′ , Uµ
b = Uµ

|z′=−1+βb′ , (9)

and

Nµ,γ =

(
−ε√µ∇γζ ′

1

)
, Nµ,γ

b =

(
−β√µ∇γb′

1

)
. (10)

Notice that our nondimensionalization of the vorticity allows us to consider only weakly
sheared flows (see [4], [34], [30]). The nondimensionalized fluid domain is

Ω′t′ := {(X ′, z′) ∈ R3 , − 1 + βb′(X ′) < z′ < εζ ′(t′, X ′)}. (11)

Finally, if V =

(
u
v

)
∈ R2, we define V by V⊥ =

(
−v
u

)
. Then, the Euler-Coriolis

equations (1) become∂t′U
µ +

ε

µ

(
Uµ · ∇µ,γX′,z′

)
Uµ +

ε
√
µ

Ro

(
V′⊥

0

)
= −1

ε
∇µ,γX′,z′P

′ − 1

ε
ez in Ω′t,

divµ,γX′,z′ Uµ = 0 in Ω′t,

(12)

with the boundary conditions ∂t′ζ
′ − 1

µ
Uµ ·Nµ,γ = 0,

Uµ
b ·N

γ,µ
b = 0.

(13)

We can also nondimensionalize the Castro-Lannes formulation. We introduce the quan-
tity

Uµ,γ
� = V + εw∇γζ.

Then, the Castro-Lannes formulation becomes (see [5] or [26] when γ = 1),

∂tζ −
1

µ
Uµ ·Nµ,γ = 0,

∂tU
µ,γ
� +∇γζ+ε

2
∇γ
∣∣∣Uµ,γ

�

∣∣∣2− ε

2µ
∇γ
[(

1 + ε2µ |∇γζ|2
)

w2
]
+εω ·Nµ,γ V⊥+

ε

Ro
V⊥ = 0,

∂tω+
ε

µ

(
Uµ ·∇µ,γX,z

)
ω=

ε

µ

(
ω · ∇µ,γX,z

)
Uµ+

ε

µRo
∂zU

µ,

(14)
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where Uµ =

(√
µV
w

)
= Uµ[εζ, βb](Uµ,γ

� ,ω) is the unique solution in H1(Ωt) of
curlµ,γ Uµ = µω in Ωt,

divµ,γ Uµ = 0 in Ωt,

(V + εw∇γζ)|z=εζ = Uµ,γ
� ,

Uµ
b ·N

µ,γ
b = 0,

(15)

and with the following constraint

∇⊥ ·Uµ,γ
� = ω ·Nµ,γ . (16)

Remark 1.1. When, ω = 0 and Ro = +∞, we get the irrotational water waves equations
(see Remark 2.4 in [5]). In particular in this situation, when γ = 0 we can check that

the velocity Uµ becomes two dimensional : Uµ =
(√
µVx, 0,w

)t
. This is not the case

when ω 6= 0. Even if γ = 0, the vorticity transfers energy from Vx to Vy. The only way
to get a two dimensional speed is to assume that ω = (0, ωy, 0)t (see for instance [18]).

Remark 1.2. Notice that if
(
ζ,Uµ,γ

� ,ω
)

is a solution of the Castro-Lannes system (14),

∇⊥ ·Uµ,γ
� satisfies the equation

∂t∇⊥ ·Uµ,γ
� +∇γ ·

(
εω ·Nµ,γV⊥ +

ε

Ro
V
)

= 0.

Furthermore, by taking the trace of the third equation of the Castro-Lannes system (14),
we can see that ω ·Nµ,γ satisfies the equation

∂t (ω ·Nµ,γ) +∇γ ·
(
εω ·Nµ,γV⊥ +

ε

Ro
V
)

= 0,

Hence, the constraint (16) is propagated by the equations.

We add a technical assumption. We assume that the water depth is bounded from below
by a positive constant

∃hmin > 0 , 1 + εζ − βb ≥ hmin. (17)

We also suppose that the dimensionless parameters satisfy

∃µmax, 0 < µ ≤ µmax, 0 < ε ≤ 1, 0 ≤ γ ≤ 1, 0 ≤ β ≤ 1 and
ε

Ro
≤ 1. (18)

Remark 1.3. We have ε
Ro = fL√

gH
. As said in [26], it is quite reasonable to assume

that ε
Ro ≤ 1 since for water waves, the typical rotation speed due to the Coriolis forcing

is less than the typical water wave celerity (see for instance [29], [11], [20]).
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1.3 Useful results

In this paper, we fully justify different asymptotic models of the water waves equations.
Then, we have to define the notion of consistence (see for instance [17]).

Definition 1.4. The Castro-Lannes equations (14) are consistent of order O
(
µk
)

with

a system of equations S for ζ and V if for all sufficiently smooth solutions
(
ζ,Uµ,γ

� ,ω
)

of the Castro-Lannes equations (14) , the pair
(
ζ,V[εζ, βb]

(
Uµ,γ

� ,ω
))

(defined in (22))

solves S up to a residual of order O
(
µk
)
.

We also need an existence result for the Castro-Lannes formulation (14). This is the
purpose of the next theorem proven in [26]. We recall that the existence of the water
waves equations is always under the so-called Rayleigh-Taylor condition assuming the
positivity of the Rayleigh-Taylor coefficient a (see Part 3.4.5 in [17] for the link between
a and the Rayleigh-Taylor condition or [26]) where

a := a[εζ, βb](Uµ,γ
� ,ω) = 1 + ε

(
∂t + εV[εζ, βb](Uµ,γ

� ,ω) · ∇
)

w[εζ, βb](Uµ,γ
� ,ω). (19)

Notice that in [26] we explain how we can define initially the Rayleigh-Taylor coefficient
a.

Theorem 1.5. Let A > 0, N ≥ 5, b ∈ HN+2(R2). We assume that(
ζ0, (U

µ,γ
� )0,ω0

)
∈ HN+ 1

2 (R2)×HN (R2)×HN−1(Ω0),

that ∇µ,γ · ω0 = 0 and that Condition (16) is satisfied. We suppose that (ε, β, γ, µ,Ro)
satisfy (18). Finally, we assume that

∃hmin, amin > 0 , εζ0 + 1− βb ≥ hmin and a[εζ0, βb]((U
µ,γ
� )0,ω0) ≥ amin,

and

|ζ0|
HN+ 1

2
+

∣∣∣∣∣ 1√
1 +
√
µ|D|

(Uµ,γ
� )0

∣∣∣∣∣
HN

+ ||ω0||HN−1 ≤ A.

Then, there exists T > 0 and a unique classical solution
(
ζ,Uµ,γ

� ,ω
)

to the Castro-

Lannes (14) with initial data
(
ζ0, (U

µ,γ
� )0,ω0

)
. Moreover,

T =
T0

max(ε, β, ε
Ro)

,
1

T0
= c1,

max
[0,T ]

(
|ζ(t, ·)|HN +

∣∣∣∣∣ 1√
1 +
√
µ|D|

Uµ,γ
� (t, ·)

∣∣∣∣∣
HN− 1

2

+ ||ω(t, ·)||HN−1

)
= c2,

with cj = C
(
A,µmax,

1
hmin

, 1
amin

, |b|HN+2

)
.
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Thanks to this theorem, we know that the quantities ζ, Uµ,γ
� , ω and then V (defined in

(22)) remain bounded uniformly with respect to the small parameters during the time
evolution of the flow, which will be essential to derive rigorously asymptotic models.

2 Boussinesq-Coriolis equations when γ = 0

This part is devoted to the derivation and the full justification of the Boussinesq-Coriolis
equations (31) under a Coriolis forcing and with γ = 0. These equations are an
order O(µ2) approximation of the water waves equations under the assumption that
ε, β = O(µ). The corresponding regime is called long wave regime or Boussinesq regime.
Contrary to [4], whose approach is based on the averaged Euler equations, our derivation
is based on the Castro-Lannes equations (14). Then, the asymptotic regime is

ABouss =
{

(ε, β, γ, µ,Ro) , 0 ≤ µ ≤ µ0,
ε

Ro
≤ 1, ε = O(µ), β = O (µ) , γ = 0

}
. (20)

Remark 2.1. In fact, we can relax the assumption γ = 0 by only assuming that γ =
O
(
µ2
)

since we neglect all the terms of order O(µ2) in the following.

We introduce the water depth

h(t,X) = 1 + εζ(t,X)− βb(X), (21)

and the averaged horizontal velocity

V = V[εζ, βb](Uµ,γ
� ,ω)(t,X) =

1

h(t,X)

∫ εζ(t,X)

z=−1+βb(X)
V[εζ, βb](Uµ,γ

� ,ω)(t,X, z)dz.

(22)
More generally, if u is a function defined in Ω, u is its average and u∗ = u − u. In the
following we denote V = (u, v)t. As noticed in [5], we have to introduce the ”shear”
velocity

Vsh = Vsh[εζ, βb](Uµ,γ
� ,ω)(t,X) = (ush, vsh) =

∫ εζ

z
ω⊥h (23)

and its average

Q =
(
Qx,Qy

)t
= Vsh =

1

h

∫ εζ

−1+βb

∫ εζ

z′
ω⊥h .

When γ = 0, Uµ,γ
� = (u+ εw∂xζ, v)t. Hence in the following, we denote

u� = u+ εw∂xζ. (24)

In this section, we do the asymptotic expansion with respect to µ of different quantities.
In the following, we denote by R a remainder whose exact value has no importance and
which is bounded uniformly with respect to µ.
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Remark 2.2. Notice that thanks to Theorem 1.5, we know that the quantities ζ, Uµ,γ
� ,

ω , V and U remain bounded uniformly with respect to the small parameters during the
time evolution of the flow. Furthermore, ∂tζ, ∂tU

µ,γ
� , ∂tω and ∂tU also remain bounded

uniformly with respect to the small parameters during this time.

2.1 Asymptotic expansion for the velocity and useful identities

In this part, we give an expansion of the velocity with respect to µ. First we recall the
following fact (the proof is a small adaptation of Proposition 4.2 in [26]).

Proposition 2.3. If
(
ζ,Uµ,γ

� ,ω
)

satisfy the Castro-Lannes system (14), we have

Uµ ·Nµ,γ = −µ∇γ ·
(
hV
)
.

This proposition, coupled with the first equation of (14), gives us an equation that links
ζ to V. In particular, when γ = 0, we get an equation that links ζ to u. We also need
an expansion of u and v with respect to µ. The following proposition is for v.

Proposition 2.4. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), we have

v = v +
√
µv∗sh,

v = v −√µQy,

ω ·Nµ,0 = ∂xv

and

∂tv + εu∂xv +
ε

Ro
u = 0.

Proof. Since curlµ,0 Uµ = µω, we get that

√
µωx = −∂zv and ωz = ∂xv. (25)

Then, plugging the ansatz v = v +
√
µv1 in the first equation and using the fact that

the average of v1 is equal to 0 we get

v = v −√µ1

h

∫ εζ

−1+βb

∫ εζ

z′
ωx.

Furthermore, from the equation on the second component of Uµ,0
� , we have

∂tv + εω ·Nµ,0u+
ε

Ro
u = 0.

Then, using the second equation of (25), we get that ω · Nµ,0 = ∂xv and the result
follows.
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The expansion of u is more complex and also involves an expansion of w. It is the
purpose of the following proposition. But before, we also have to introduce the following
operators

T [εζ, βb] f =

∫ εζ

z
∂2x

∫ z′

−1+βb
f and T ∗ [εζ, βb] f = (T [εζ, βb] f)∗ ,

When no confusion is possible, we denote T = T [εζ, βb] and T ∗ = T ∗ [εζ, βb].

Proposition 2.5. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), we have

u = u+
√
µu∗sh + µT ∗u+ µ

3
2T ∗u∗sh + µ2R,

u = u−√µQx + µT ∗u− µ
3
2Tu∗sh + µ2R,

where T ∗u = −1
2

(
[z + 1− βb]2 − h2

3

)
∂2xu+ βR. We also have

w = −µ∂x
(∫ z

−1+βb
u

)
,

w = −µh∂xu− µ
3
2∂xhQx + max(µ2, βµ)R,

and

u� = u−√µQx − µ
1

3h
∂x
(
h3∂xu

)
− µ

3
2

(
Tu∗sh + Qx (∂xh)2

)
+ max(µ2, βµ)R.

Proof. This proof is a small adaptation of part 2.2 in [4] and Part 4.2 in [26]. We recall
the main steps. Using the fact that the velocity is divergence free and Proposition 2.3,
we get

w = −µ∂x
(∫ z

−1+βb
u

)
.

Furthermore, since curlµ,0 Uµ = µω, we get that

√
µωy = ∂zu− ∂xw.

Then, plugging the ansatz u = u +
√
µu1 and using the fact that the average of u1 is

zero, we get

u1 = −
(∫ εζ

z
ωy

)∗
− 1
√
µ

(∫ εζ

z
∂xw

)∗
and

u = u+
√
µu∗sh + µT ∗u. (26)
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Then, the expansion for u follows by applying 1 + µT ∗ to the previous equation. Notice
that T ∗u = −Tu. The computation of T ∗u follows from the fact that u does not depend
on z. Finally, the expansion w and u� is the direct consequence for Proposition 2.3 and
the expansion of u.

Thanks to the previous proposition, we can also get an expansion of ∂tu and ∂tw.

Proposition 2.6. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), we have

∂t

(
u− u−√µu∗sh − µT ∗u− µ

3
2T ∗u∗sh

)
= µ2R,

∂t

(
u− u+

√
µQx − µT ∗u+ µ

3
2Tu∗sh

)
= µ2R,

∂t

(
w + µh∂xu+ µ

3
2∂xhQx

)
= max(µ2, βµ)R.

(27)

Proof. From Equality (26) we get that

u = (1− µT ∗) (u+
√
µu∗sh) + µ2T ∗T ∗u. (28)

Hence the first and the second equations follows from Remark 2.2. For the third equation,
we get the result thanks to Proposition (2.3) and Remark 2.2.

As [4] noticed, we can not express Tu∗sh in terms of ζ and V. Then, we have to introduce

V] = (u], v])t = −24

h3

∫ εζ

−1+βb

∫ εζ

z

∫ z

−1+βb
(u∗sh, v

∗
sh)t ,

=
12

h3

∫ εζ

−1+βb
(1 + z − βb)2 (u∗sh, v

∗
sh)t .

(29)

Notice that the previous equality follows from a double integration by parts. We have
the following Lemma.

Lemma 2.7. We have the following equalities

Tu∗sh = − (ε∂xζ)2 Qx +
1

h

∫ εζ

−1+βb
∂x

∫ εζ

z
∂x

∫ z

−1+βb
u∗sh

= − (∂xh)2 Qx −
1

24h
∂2x

(
h3u]

)
+ βR.

Proof. We have

∂x

∫ εζ

z
∂x

∫ z

−1+βb
u∗sh =

∫ εζ

z
∂2x

∫ z

−1+βb
u∗sh + ε∂xζ∂x

∫ z

−1+βb
u∗sh (30)

and the first equality follows from the fact that the average of u∗sh is zero and that
u∗sh = −Qx. The second equality follows from the same arguments.
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In the following section, we give equations for Qx, Qy V] since we can not express

these quantities with respect to ζ and V. These equations are essential to derive the
Boussinesq-Coriolis equations.

2.2 Equations for Qx, Qy and V]

In this part we give the equations satisfied by Qx and Qy at order O
(
µ

3
2

)
. The com-

putations are similar to Part 5.4.1 in [4]. We start by Qx.

Proposition 2.8. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then, in the

Boussinesq regime (20), Qx satisfies the following equation

∂tQx + εu∂xQx + εQx∂xu+
ε

Ro
√
µ

(v − v) = µ
3
2R,

and u∗sh satisfies the equation

∂tu
∗
sh + εu∂xu

∗
sh + εu∗sh∂xu+

ε

Ro
√
µ

(v − v) = µ
3
2R.

Proof. Using the second equation of the vorticity equation of the Castro-Lannes system
(14), we have

∂tωy + εu∂xωy +
ε

µ
w∂zωy = εωx∂xv +

ε
√
µ
ωz∂zv +

ε

Ro
√
µ
∂zv.

Since ωx = − 1√
µ∂zv and ωz = ∂xv we notice that εωx∂xv + ε√

µωz∂zv = 0. Using

Proposition 2.5 we get

∂tωy + εu∂xωy − ε∂x [(1+z−βb)u] ∂zωy −
ε

Ro
√
µ
∂zv = µ

3
2R,

Then, integrating with respect to z, using the fact that ∂tζ + ∂x (hu) = 0 and ush =

−
∫ εζ
z ωy, we get

∂tush + εu∂xush + εush∂xu+
ε

Ro
√
µ

(v − v) = ε∂x [(1 + z − βb)u] ∂zush + µ
3
2R.

Integrating again with respect to z, using the fact that ∂tζ + ∂x (hu) = 0 and Qx = u∗sh,
we obtain

∂tQx + εu∂xQx + εQx∂xu+
ε

Ro
√
µ

(v − v) =µ
3
2R.

We have a similar equation for Qy.
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Proposition 2.9. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then, in the

Boussinesq regime (20), Qx satisfies the following equation

∂tQy + εu∂xQy+ εQx∂xv +
ε

Ro
√
µ

(u− u) = µ
3
2R

and v∗sh satisfies the equation

∂tv
∗
sh + εu∂xv

∗
sh + εu∗sh∂xv +

ε

Ro
√
µ

(u− u) = µ
3
2R.

Proof. Using the first equation of the vorticity equation of the Castro-Lannes system
(14), we have

∂tωx + εu∂xωx +
ε

µ
w∂zωx = εωx∂xu+

ε
√
µ
ωz∂zu+

ε

Ro
√
µ
∂zu.

Then, using the fact that ∇µ,0 · ω = 0 and ∇µ,0 ·Uµ,γ = 0, we get

∂tωx −
ε
√
µ
∂z (uωz) +

ε

µ
∂z (wωx) =

ε

Ro
√
µ
∂zu.

then, we integrate with respect to z and, using the fact that ∂tζ − 1
µUµ · Nµ,0 = 0,

ωx = − 1√
µ∂zv and ωz = ∂xv, we obtain

∂t

(∫ εζ

−1+βb
ωx

)
− ε
√
µ
u∂xv +

ε
√
µ
u∂xv +

ε

µ
3
2

w∂zv +
ε

Ro
√
µ

(u− u) = 0.

Then, we integrate again with respect to z and, using Proposition 2.4 and the fact that
∂tζ − 1

µUµ ·Nµ,0 = 0, Uµ
b ·N

µ,0
b = 0, and ∇µ,0 ·Uµ = 0, we get

∂tQy −
ε
√
µ
u∂xv +

ε
√
µ

1

h
∂x

(∫ εζ

−1+βb
uv

)
+

1
√
µh
∂thv +

ε

Ro
√
µ

(u− u) = 0.

Then, thanks to Propositions 2.3, 2.4 and 2.5 we finally obtain that

∂tQy+εu∂xQy+εQx∂xv+
ε

Ro
√
µ

(u−u)= µ
3
2R.

Notice that we give in Subsection 4.1 a generalization of the two previous propositions
to the fully nonlinear Green-Naghdi regime. Furthermore, in the following proposition
we give an equation for V] up to terms of order O

(√
µ
)
.

Proposition 2.10. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then V] sat-

isfies the following equation

∂tV
] + εV]∂xu+ εu∂xV

] +
ε

Ro
V]⊥ = max

(
ε,

ε

Ro

)√
µR.

13



Proof. The proof is similar to the computation in Part 4.4 in [4]. After multiplying by
(1+z−βb)2 and integrating with respect to z the second equations of Propositions 2.8 and
2.9, we neglect all the term of order O(

√
µ). Then, using the fact that ∂tζ + ∂x(hu) = 0

and V−V =
√
µV∗sh + µR, we get the result.

2.3 The Boussinesq-Coriolis equations

We can now establish the Boussinesq-Coriolis equations when d = 1. The Boussinesq-
Coriolis equations are the following system

∂tζ + ∂x (hu) = 0,(
1− µ

3
∂2x

)
∂tu+ ∂xζ + εu∂xu−

ε

Ro
v +

ε

Ro
µ

3
2

1

24
∂2x
v]

h
= 0,

∂tv + εu∂xv +
ε

Ro
u = 0,

∂tV
] + εV]∂xu+ εu∂xV

] +
ε

Ro
V]⊥ = 0,

(31)

where V] is defined in (29). We can show that the Boussinesq-Coriolis equations are an
order O(µ2) approximation of the water waves equations.

Remark 2.11. Inspired by [18], we can renormalize V] by h and, using the first equation
of (31), we get the following equation

∂t

(
V]

h

)
+ εu∂x

(
V]

h

)
+

ε

Ro

(
V]

h

)⊥
= 0.

This remark will be useful for the local existence (Proposition 2.15).

Proposition 2.12. In the Boussinesq regime ABouss (20), the Castro-Lannes equations
(14) are consistent at order O(µ2) with the Boussinesq-Coriolis equations (31) in the
sense of Definition 1.4.

Proof. The first equation of the Boussinesq-Coriolis equations is always satisfied for a
solution of the Castro-Lannes formulation by Proposition 2.3. For the second equation,
we use Proposition 2.5, Proposition 2.8 together with Proposition 2.6, Lemma 2.7 and
Proposition 2.10 (we recall that ε = O(µ)). Notice the fact that all the terms with Qx

disappear. We also use the fact that

h3v] =
v]

h
+ µR.

Then, the third equation follows from Proposition 2.5, 2.5 and 2.9 (all the terms with
Qy also disappear).

We notice that contrary to the classical Boussinesq equations, we have a new term due to
the vorticity that we can not neglect in presence of a Coriolis forcing. In our knowledge,
this term was not highlighted before in the literature.
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Remark 2.13. In the Boussinesq-Coriolis system (31) we could simplify the term ∂2x
v]

h
by ∂2xv

] since these terms are equal up to a remainder of order O(µ). However, the term

∂2x
v]

h will be essential for the local existence (see Remark 2.16 ).

Remark 2.14. If we assume that ε
Ro = O

(√
µ
)
, we can neglect the term with v] in the

second equation of (31) and we obtain
∂tζ + ∂x (hu) = 0,(

1− µ

3
∂2x

)
∂tu+ ∂xζ + εu∂xu−

ε

Ro
v = 0,

∂tv + εu∂xv +
ε

Ro
u = 0.

(32)

This system is the classical Boussinesq equations with a standard Coriolis forcing. It
is consistent of order O(µ2) with the Boussinesq-Coriolis equations (31). We use this
system in Subsections 3.2 and 3.3.

2.4 Full justification of the Boussinesq-Coriolis equations

In this part, we fully justify the Boussinesq-Coriolis equations (31). In the following we
denote by u the quantity u and by v the quantity v. We show that the Boussinesq-
Coriolis equations are wellposed. We define the energy space

Xs(R) = Hs(R)×Hs+1(R)×Hs(R)×Hs+1(R)×Hs+1(R), (33)

endowed with the norm

|(ζ, u, v,W)|2Xs
µ

= |ζ|2Hs + |u|2Hs + µ |∂xu|2Hs + |v|2Hs + |W|2Hs + µ |∂xW|2Hs . (34)

Proposition 2.15. Let A > 0, s > 1
2 + 1,

(
ζ0, u0, v0,V

]
0

)
∈ Xs(R) and b ∈ Hs+1(R).

We suppose that (ε, β, γ, µ,Ro) ∈ ABouss . We assume that

∃hmin > 0 , εζ0 + 1− βb ≥ hmin

and ∣∣∣∣∣
(
ζ0, u0, v0,

V]
0

1 + εζ0 − βb

)∣∣∣∣∣
Xs
µ

+ |b|Hs+1 ≤ A.

Then, there exists an existence time T > 0 and a unique solution
(
ζ, u, v,V]

)
on [0, T ]

to the Boussinesq-Coriolis equations (31) with initial data
(
ζ0, u0, v0,V

]
0

)
such that we

have
(
ζ, u, v, V

]

h

)
∈ C ([0, T ];Xs(R)) with h = 1 + εζ − βb. Moreover,

T =
T0

max(µ, ε
Ro

√
µ)

,
1

T0
= c1 and max

[0,T ]

∣∣∣∣(ζ, u, v, V]

h

)
(t, ·)

∣∣∣∣
Xs
µ

= c2,
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with cj = C
(
A,µmax,

1
hmin

)
.

Proof. We only give the energy estimates. For the existence see for instance the proof

of Theorem 1 in [14]. We assume that
(
ζ, u, v,V]

)
solves (31) on

[
0, T0

max(µ, ε
Ro

√
µ)

]
and

that

1 + εζ − βb ≥ hmin

2
on

[
0,

T0
max(µ, ε

Ro

√
µ)

]
.

We denote U = (ζ, u, v)t and we focus first on the first three equations. This part is
a small adaptation of the proof of Theorem 1 in [14]. The the first three equations
of the Boussinesq-Coriolis equations can be symmetrized, as an hyperbolic system, by
multiplying the second and the third equations by h = 1 + εζ −βb. Then, we obtain the
following system

A0(U)∂tU +A1(U)∂xU +B1U +
ε

Ro
B2(U)U =

ε

Ro
µ

3
2F (h, v]),

where

A0(U) =

1 0 0

0 h− µh3∂
2
x 0

0 0 h

 , A1(U) =

εu h h
h εhu 0
h 0 εhu


and

B1 =

0 −β∂xb 0
0 0 0
0 0 0

 , B2(U) =

0 0 0
0 0 −h
0 h 0

 and F (h, v]) =

 0

− h
24∂

2
x
v]

h
0

 .

Then we remark that A1 is symmetric and there exists c1, c2 = C
(

1
hmin

, |h|L∞
)

such

that

c1 |∂xf |22 ≤
(
−1

3
∂x (h∂xf) , f

)
2

≤ c2 |∂xf |22 .

Hence we introduce the symmetric matrix operator

S(U) =

1 0 0
0 h− µ

3∂x (h∂x·) 0
0 0 h


and the energy associated

Es(U) = (S(U)ΛsU,ΛsU)2 .

Then, we see that
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(ΛsB2(U)U,ΛsU)2 = 0

and by standard product estimates we get

µ
3
2

∣∣∣∣(hΛs∂2x
v]

h
,Λsu

)
2

∣∣∣∣ ≤ √µC(Es(U), |b|Hs+1)
√
µ

∣∣∣∣v]h
∣∣∣∣
Hs+1

. (35)

Furthermore, notice that

µ |∂t∂xu|Hs = µ

∣∣∣∣∣(1− µ

3
∂2x

)−1
∂x

(
∂xζ + εu∂xu−

ε

Ro
v +

ε

Ro

µ
3
2

24
∂2x
v]

h

)∣∣∣∣∣
Hs

,

≤ C
(
µmax, Es(U),

√
µ

∣∣∣∣∂x v]h
∣∣∣∣
Hs

)
.

and therefore(µ
3
∂xhΛs∂x∂tu,Λ

su
)
2
≤ µC

(
Es(U), |b|Hs+1 ,

√
µ

∣∣∣∣∂x v]h
∣∣∣∣
Hs

)
.

Gathering all the previous estimate and proceeding as in [14] we obtain

d

dt
Es(U) ≤ max

(
µ,

ε

Ro

√
µ
)
C

(
Es(U), |b|Hs+1 ,

∣∣∣∣v]h
∣∣∣∣
Hs

,
√
µ

∣∣∣∣∂x v]h
∣∣∣∣
Hs

)
.

Furthermore, using Remark 2.11 and the Kato-Ponce estimate, we get

d

dt

∣∣∣∣V]

h

∣∣∣∣2
Hs

≤ µC |u|Hs

∣∣∣∣V]

h

∣∣∣∣2
Hs

,

d

dt
µ

∣∣∣∣∂xV]

h

∣∣∣∣2
Hs

≤ µC

(
√
µ |∂xu|Hs

∣∣∣∣V]

h

∣∣∣∣2
Hs

+ |u|Hs

√
µ

∣∣∣∣∂xV]

h

∣∣∣∣
Hs

)
√
µ

∣∣∣∣∂xV]

h

∣∣∣∣
Hs

.

Then, the result follows.

Remark 2.16. Notice that the previous energy estimates do not imply that V] ∈
Hs+1(R). Hence, it is essential that in Inequality (35) we have the term ∂2x

v]

h and
not simply ∂2xv

] (see Remark 2.13).

Then, we similarly can prove a local wellposedness result for System (32).

Corollary 2.17. Let A > 0, s > 1
2 + 1, (ζ0, u0, v0) ∈ Hs(R) × Hs+1(R) × Hs(R) and

b ∈ Hs+1(R). We suppose that (ε, β, γ, µ,Ro) ∈ ABouss . We assume that

∃hmin > 0 , εζ0 + 1− βb ≥ hmin

and
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|ζ0|Hs + |u0|Hs +
√
µ |∂xu0|Hs + |v0|Hs + |b|Hs+1 ≤ A.

Then, there exists an existence time T > 0 and a unique solution to the Boussinesq-
Coriolis equations (31) (ζ, u, v) ∈ C

(
[0, T ];Hs(R)×Hs+1(R)×Hs(R)

)
with initial data

(ζ0, u0, v0). Moreover,

T =
T0
µ

,
1

T0
= c1 and max

[0,T ]
|ζ(t, ·)|Hs + |u(t, ·)|Hs +

√
µ |∂xu(t, ·)|Hs + |v(t, ·)|Hs = c2,

with cj = C
(
A,µmax,

1
hmin

)
.

Furthermore, we have a stability result for the Boussinesq-Coriolis system (31).

Proposition 2.18. Let the assumptions of Proposition 2.15 satisfied. Suppose that there

exists
(
ζ̃, ũ, ṽ, Ṽ

]

h̃

)
∈ C

([
0, T0

max
(
µ,
ε
√
µ

Ro

)
]

;Xs(R)

)
satisfying

∂tζ̃ + ∂x

(
h̃ũ
)

= R1,(
1− µ

3
∂2x

)
∂tũ+ ∂xζ̃ + εũ∂xũ−

ε

Ro
ṽ +

ε

Ro
µ

3
2

1

24
∂x
ṽ]

h̃
= R2,

∂tṽ + εũ∂xṽ +
ε

Ro
ũ = R3,

∂t
Ṽ
]

h̃
+ εũ∂x

Ṽ
]

h̃
+

ε

Ro

Ṽ
]

h̃
= R4,

where h̃ = 1 + εζ̃ − βb and with R = (R1, R2, R3, R4) ∈ L∞
([

0, T0

max
(
µ,
ε
√
µ

Ro

)
]

;Xs(R)

)
.

Then, if we denote e =
(
ζ, u, v,V]

)
−
(
ζ̃, ũ, ṽ, Ṽ

]
)

where
(
ζ, u, v,V]

)
is the solution

given in Proposition 2.15, we have

|e(t)|Xs−1
µ
≤ C

A,µmax,
1

hmin
,

∣∣∣∣∣
(
ζ̃, ũ, ṽ,

Ṽ
]

h̃
, R

)∣∣∣∣∣
L∞([0,t];Xs

µ×Xs
µ)

(∣∣e|t=0

∣∣
Xs−1
µ

+ t |R|Xs
µ

)
.

Proof. This proof is a small adaptation of the one of Proposition 6.5 in [17] (see also [1]).

We denote Ũ =
(
ζ̃, ũ, ṽ

)
, ea = U−Ũ , Ra = (R1, R2, R3) and we keep the notations of the

proof of Proposition 2.15. Since the Boussinesq-Coriolis equations are symmetrizable,
we have


A0(U)∂tea +A1(U)∂xea +B1ea +

ε

Ro
B2(U)ea =

ε

Ro
µ

3
2F (h, v] − ṽ]) +G,

∂t

(
V]

h
− Ṽ

]

h̃

)
+ εu∂x

(
V]

h
− Ṽ

]

h̃

)
+

ε

Ro

(
V]

h
− Ṽ

]

h̃

)⊥
= H,
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where

G =F (h, ṽ])− F (h̃, ṽ])−Ra − (A0(U)−A0(Ũ))∂tŨ

− (A1(U)−A1(Ũ))∂xŨ −
ε

Ro
(B2(U)−B2(Ũ))U,

H = ε(ũ− u)∂x
Ṽ
]

h̃
+R4.

Then, using standard products estimates, we get (notice that s > 1
2 + 1)

(
Λs−1G,Λs−1ea

)
2
≤
(
|R|Xs

µ
+ µC

(
Es(Ũ), Es−1(∂tŨ),

∣∣∣∣ ṽ]h̃
∣∣∣∣
Hs

,
√
µ

∣∣∣∣∂x ṽ]h̃
∣∣∣∣
Hs

)
|e|Xs−1

)
|e|Xs−1

and

(
Λs−1H,Λs−1

(
V]

h
− Ṽ

]

h̃

))
2

≤

(
|R|Xs

µ
+ µC

(
Es(Ũ),

∣∣∣∣∣Ṽ
]

h̃

∣∣∣∣∣
Hs

,
√
µ

∣∣∣∣∂x ṽ]h̃
∣∣∣∣
Hs

)
|e|Xs−1

)
|e|Xs−1 .

Then, the result follows from energy estimates and the Gronwall’s lemma.

The two previous results and Theorem 1.5 allow us to fully justify the Boussinesq-Coriolis
equations. We recall that operators V[εζ0, βb](U

µ,0
� ,ω) and Vsh[εζ, βb](Uµ,0

� ,ω)(t,X)

are defined in (22) and (23) respectively.

Theorem 2.19. Let N ≥ 7 and (ε, β, γ, µ,Ro) ∈ ABouss . We assume that we are under
the assumptions of Theorem 1.5. Then, we can define the following quantity

(u0, v0)
t = V[εζ0, βb]((U

µ,0
� )0,ω0) , (u, v)t = V[εζ, βb](Uµ,0

� ,ω),

V]
0 = V][εζ0, βb]((U

µ,0
� )0,ω0) , V] = V][εζ, βb](Uµ,0

� ,ω0),

and there exists a time T > 0 such that

(i) T has the form

T =
T0

max(µ, ε
Ro)

, and
1

T0
= c1.

(ii) There exists a unique classical solution
(
ζB , uB , vB ,V

]
B

)
of (31) with the initial data(

ζ0, u0, v0,V
]
0

)
on [0, T ].

(iii) There exists a unique classical solution
(
ζ,Uµ,0

� ,ω
)

of System (14) with initial data(
ζ0, (U

µ,0
� )0,ω0

)
on [0, T ].

(iv) The following error estimate holds, for 0 ≤ t ≤ T ,
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∣∣∣(ζ, u, v,V]
)
−
(
ζB, uB, vB,V

]
B

)∣∣∣
L∞([0,t]×R)

≤ µ2t c2,

with cj = C
(
A,µmax,

1
hmin

, 1
amin

, |b|HN+2

)
.

This theorem shows that the solutions of the water waves system (14) remain close to

the solutions of the Boussinesq-Coriolis equations (31) over times O
(

1
max(µ, ε

Ro
)

)
with an

accuracy of order O(µ). Hence, if one considers a system and wants to show that the
solutions of this system remain close to the solutions of the waves equations over times

O
(

1
max(µ, ε

Ro
)

)
with an accuracy of order O(µ), it is sufficient to compare the solutions

of this system with the solutions of the Boussinesq-Coriolis equations (31). It is our
approach in the following.

3 Different asymptotic models in the Boussinesq regime
over a flat bottom

The Boussinesq-Coriolis equations (31) are particularly interesting for the evolution of
offshore water waves. Without vorticity, we get the so-called Boussinesq equations.
When we add a rotation, and in particular Coriolis effects, a standard assumption made

by physicists is to also assume that the Rossby radius, or Obukhov radius,
√
gH
f is greater

than the typical length of the waves L (see for instance [29], [11], [20]). Then, different
regimes for the Coriolis parameter were considered depending on whether the rotation is
weak or not ([27], [10], [12]). In this paper, we consider three different regimes (noticed
in [10]), a strong rotation ( ε

Ro ≤ 1), weak rotation ( ε
Ro = O(

√
µ)) and very weak rotation

( ε
Ro = O(µ)). We derive and fully justify different asymptotic models when the bottom

is flat : a linear equation admitting the so-called Poincaré waves (39) ; the Ostrovsky
equation (41), which is a generalization of the KdV equation (50) in presence of a Coriolis
forcing, when the rotation is weak; and the KdV equation when the rotation is very weak.

3.1 Strong rotation, the Poincaré waves

In this part we are interested in the behaviour of long water waves under a strong Coriolis
forcing (in the sense of [10]). We suppose that ε

Ro is of order 1. The asymptotic regime
is

APoin =
{

(ε, β, γ, µ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, β = γ = 0,
ε

Ro
= 1
}
. (36)

Then, the Boussinesq-Coriolis equations (31) become
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∂tζ + ∂x ((1 + µζ)u) = 0,(
1− µ

3
∂2x

)
∂tu+ ∂xζ + µu∂xu− v +

µ
3
2

24
∂2x
v]

h
= 0,

∂tv + µu∂xv + u = 0,

∂tV
] + µV]∂xu+ µu∂xV

] + V]⊥ = 0.

(37)

Our purpose is to justify the so-called Poincaré waves or Sverdrup waves ([33]), which
are inertia-gravity waves in the linear setting. Dropping all the terms of order O (µ) in
the Boussinesq-Coriolis equation, we get the linear system

∂tζ + ∂xu = 0,

∂tu+ ∂xζ − v = 0,

∂tv + u = 0.

(38)

Then, if we denote U = (ζ, u, v)t, by taking the Fourier transform, we get

∂tÛ = AÛ with A =

 0 −iξ 0
−iξ 0 1
0 −1 0


and we obtain,

Û = S(t, ξ)Û0 =


ξ2 cos(

√
ξ2+1t)+1

ξ2+1
−iξ sin(

√
ξ2+1t)√
ξ2+1

iξ
cos(
√
ξ2+1t)−1
ξ2+1

−iξ sin(
√
ξ2+1t)√
ξ2+1

cos(
√
ξ2 + 1t)

sin(
√
ξ2+1t)√
ξ2+1

−iξ cos(
√
ξ2+1t)−1
ξ2+1

− sin(
√
ξ2+1t)√
ξ2+1

ξ2+cos(
√
ξ2+1t)

ξ2+1

 Û0. (39)

Commonly, Poincaré waves are waves of the form

U(t, x) = ei(xk±t
√
k2+1)U0.

They are solutions of the Klein-Gordon equation. In this setting, Poincaré waves corre-
spond to solutions of System (38) of the form

Û(t, ξ) = e±it
√
ξ2+1Û0(ξ).

Therefore, a solution of System (38) is a sum of two Poincaré waves if and only if
1

ξ2+1
0 − iξ

ξ2+1

0 0 0
iξ

ξ2+1
0 ξ2

ξ2+1

 Û0 = 0,

which is equivalent to
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ζ0 = ∂xv0. (40)

In the following, we denote by S(t) the semi-group of the linear Boussinesq-Coriolis
equation. The end of this part is devoted to the full justification of Poincaré waves. The
following lemma shows that Condition (40) is propagated by the flow of System (38).

Lemma 3.1. Let (ζ, u, v) be a solution of (38) such that (ζ, u, v)|t=0 = 0 satisfies Con-
dition (40). Then, for all t ∈ R,

ζ(t, ·) = ∂xv(t, ·).

We also have the following dispersion result (see for instance [36] and [25] or Corollary
7.2.4 in [13]).

Lemma 3.2. Let u0 ∈W 2,1(R). Then∣∣∣∣∫
R
eixξ±t

√
ξ2+1u0(ξ)dξ

∣∣∣∣
L∞x

≤ C√
1 + |t|

|u0|W 2,1 .

We can give the main result of this part.

Theorem 3.3. Let µ0 > 0, ζ0, u0, v0,V
]
0 ∈ H6(R), xζ0, xu0, xv0 ∈ H4(R), such that

ζ0, v0 satisfy Condition (40), 1 + εζ ≥ hmin > 0 and 0 < µ < µ0 . Then, there exists a
time T > 0, such that there exists

(i) a unique classical solution
(
ζB, uB, vB,V

]
B

)
of (37) with initial data

(
ζ0, u0, v0,V

]
0

)
on
[
0, T√

µ

]
.

(ii) a unique solution (ζ, u, v) of (38) with initial data (ζ0, u0, v0) on
[
0, T√

µ

]
.

Moreover, we have the following error estimate for all 0 ≤ t ≤ T√
µ ,

|(ζB, uB, vB)− (ζ, u, v)|L∞([0,t]×R) ≤ C
(

µt

1 +
√
t

+ µ2t2 + µ
3
2 t

)
≤ Cµ

3
4 .

where C = C
(
T, 1

hmin
, µ0, |ζ0|H6 , |u0|H6 , |v0|H6 ,

∣∣∣V]
0

∣∣∣
H6
, |xζ0|H4 , |xu0|H4 , |xv0|H4

)
.

Remark 3.4. By standard energy estimates, we easily get that, for all 0 ≤ t ≤ T√
µ ,

|(ζB, uB, vB)− (ζ, u, v)|L∞([0,t]×R) ≤ Cµt ≤ C
√
µ,

where C is as in the previous theorem. Therefore, our result is not a simple energy
estimate. We use the dispersive effects due to the Coriolis forcing to be more accurate.
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Proof. The first point follows from Proposition 2.15. For the error estimate, if we de-
note by U = (ζB, uB, vB)t, U satisfies the linear Boussinesq-Coriolis equation up to a

remainder of order µ and a remainder of order µ
3
2 . Then, using the Duhamel’s formula

we get

U(t) = S(t)U0 + µ

∫ t

0
S(t− τ)

 −∂x (ζBuB) (τ)
−uB(τ)∂xuB(τ) + 1

3∂
2
x∂τuB(τ)

−uB∂xvB

+ µ
3
2

∫ t

0
S(t− τ)R

where R is a remainder bounded uniformly with respect to µ. Then, using again the
Duhamel’s formula on the first integral we get

U(t) = S(t)U0 − µ
∫ t

0
S(t− τ)

∂x ((S1(τ)U0)(S2(τ)U0))
(S2(τ)U0)∂x(S2(τ)U0)
(S2(τ)U0)∂x(S3(τ)U0)


+ µ

∫ t

0
S(t− τ)

 0
1
3∂

2
x∂τS2(τ)U0

0

+ µ2
∫ t

0

∫ τ

0
R̃+ µ

3
2

∫ t

0
S(t− τ)R̃

= S(t)U0 − µI1(t) + µI2(t) + µ2I3(t) + µ
3
2 I4(t),

where Si(t) is the ith row of S(t). We start by estimating I1. We have

I1(t) =

∫ t

0
S(t− τ)

∂x (ζ(τ)u(τ))
u(τ)∂xu(τ)
u(τ)∂xv(τ)

 .

Then, we notice that ∂x (ζ(τ)u(τ)) = ∂x (u(τ)∂xv(τ)) since ζ(τ) = ∂xv(τ) by Lemma
3.1. Therefore, using Lemma 3.2 and products estimates, we get

|I1(t)|L∞ ≤
∫ t

0

1√
1 + t− τ

∣∣∣∣∣∣
∂x ((S1(τ)U0)(S2(τ)U0))

(S2(τ)U0)∂x(S2(τ)U0)
(S2(τ)U0)∂x(S3(τ)U0)

∣∣∣∣∣∣
W 2,1

≤ C
(
|ζ0|H3 , |u0|H3 , |v0|H3 ,

∣∣∣V]
0

∣∣∣
H3

) t√
1 + t

.

For I2, using Lemma 3.2 we get

|I2| ≤ C (|ζ0|H4 , |u0|H4 , |v0|H4 , |xζ0|H4 , |xu0|H4 , |xv0|H4)
t√

1 + t
.

Finally, using Proposition 2.15, we have

|I3(t)|H1 ≤ C
(
|ζ0|H6 , |u0|H6 , |v0|H6 ,

∣∣∣V]
0

∣∣∣
H6

)
t2

|I4(t)|H1 ≤ C
(
|ζ0|H4 , |u0|H4 , |v0|H4 ,

∣∣∣V]
0

∣∣∣
H4

)
t.
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Gathering these four estimates, we get the result.

Hence, using Theorem 2.19, we justify that poincaré waves remain close to the solutions
of the water waves equations (14) over times Oµ (1) with an accuracy of order O (µ).
Furthermore, if one can show that a solution of the water waves equations (14), with

initial data satisfying Condition (40), exists over a time O
(

1√
µ

)
, we show that this

solution remains close, with an accuracy of order O
(
µ

3
4

)
, to the solution of the linear

Boussinesq-Coriolis equations with the same initial data. The reader interested in more
linear properties of the water waves equations in shallow water can refer to Chapter 4
in [24].

3.2 Weak rotation, the Ostrovsky equation

Without Coriolis forcing and vorticity, it is well-known, that the KdV equation is a good
approximation of the water waves equation under the assumption that ε and µ have the
same order ([7], [15], [31], [3], Part 7.1 in [17]). When the Coriolis forcing is taken into
account, Ostrovsky ([27]) derived an equation for long waves, which is an adaptation of
the KdV equation,

∂ξ

(
∂τk +

3

2
k∂ξk +

1

6
∂3ξk

)
=

1

2
k. (41)

This equation is called the Ostrovsky equation or rKdV-equation in the physical liter-
ature. Initially developed for internal water waves, several authors also studied it for
surface water waves ([28], [10], [21], [12]). The purpose of this part is to fully justify it.
Inspired by [10] we consider the asymptotic regime

AOst =
{

(ε, β, γ, µ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, β = γ = 0,
ε

Ro
=
√
µ
}
. (42)

Then, the Boussinesq-Coriolis equations become (see Remark 2.14)
∂tζ + ∂x ([1 + µζ]u) = 0,(

1− µ

3
∂2x

)
∂tu+ ∂xζ + µu∂xu−

√
µv = 0,

∂tv + µu∂xv +
√
µu = 0.

(43)

In order to motivate our approach, let us recall that we are interested in the one-
dimensional propagation of water waves in the long wave regime. If we drop all the
terms of order O(

√
µ) in the Boussinesq-Coriolis, we obtain that

∂tζ + ∂xu = 0,

∂tu+ ∂xζ = 0,

∂tv = 0.
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Hence, if we assume that v is initially zero, we get a wave equation and propagation
of traveling water waves with speed ±1. Therefore, it is natural to study how these
traveling water waves are perturbed when we add weakly nonlinear effects, i.e when we
consider the System (43). In this paper, we consider only water waves with speed 1. We
seek an approximate solution (ζapp, uapp, vapp) of (43) under the form

ζapp(t, x) = k(x− t, µt) + µζ(1)(t, x, µt),

uapp(t, x) = k(x− t, µt) + µu(1)(t, x, µt),

vapp(t, x) =
√
µv(1/2)(t, x, µt).

(44)

where k = k(ξ, τ) is our modulated traveling water waves, and the others terms are
correctors. Then, we plug the ansatz in Sytem (43) and we get

∂tζapp + ∂x ([1 + µζapp]uapp) = µR1
(1) + µ2R1,(

1− µ

3
∂2x

)
∂tuapp + ∂xζapp + µuapp∂xuapp −

√
µvapp = µR2

(1) + µ2R2,

∂tvapp + µuapp∂xvapp +
√
µuapp =

√
µR3

(1/2) + µ
3
2R3,

(45)

where

R1
(1) = ∂tζ(1) + ∂xu(1) + ∂τk + 2k∂ξk,

R2
(1) = ∂tu(1) + ∂xζ(1) + ∂τk +

1

3
∂3ξk + k∂ξk − v(1/2),

R3
(1/2) = ∂tv(1/2) + k,

and

R1 = ∂τζ(1) + ∂x
(
ku(1) + kζ(1) + µζ(1)u(1)

)
,

R2 = ∂τu(1) −
1

3
∂3ξ∂τk −

1

3
∂2x∂tu(1) − µ

1

2
∂3x∂τu(1) + ∂x

(
ku(1)

)
+ µu(1)∂xu(1),

R3 = ∂τv(1/2) +
(
k +
√
µu(1)

)
∂xv(1/2) + u(1).

(46)

Then, the idea is to choose the correctors with R1
(1)(t, x, τ) = R2

(1)(t, x, τ) = 0 and

R3
(1/2)(t, x, τ) = 0 for all x ∈ R, t ∈

[
0, Tµ

]
and τ ∈ [0, T ].

Remark 3.5. In fact, we should add
√
µζ(1/2)(t, x, µt),

√
µu(1/2)(t, x, µt), v(0)(t, x, µt),

and µv(1)(t, x, µt) to the ansatz (44) for ζapp, uapp, vapp and vapp respectively. However,
if we plug them in System (43) and we want to cancel all the terms of order

√
µ and µ,

we get

∂tζ(1/2) + ∂xu(1/2) = 0,

∂tu(1/2) + ∂xζ(1/2) + v(0) = 0,

∂tv(0) = 0,

∂tv(1) + ∂τv(0) + k∂xv(0) + u(1/2) = 0,
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which leads to ζ(1/2) = u(1/2) = v(0) = v(1) = 0 if these quantities are initially zero.
Hence, we make this assumption in the following.

Then, if we assume that v(1/2) and k vanish at x = ∞, the condition R3
(1/2) = 0 is

equivalent to the equation

∂t∂xv(1/2)(t, x, τ) + ∂ξk(x− t, τ) = 0.

Since, ∂t(k(x− t, τ)) = −∂ξk(x− t, τ), we can take

∂xv(1/2)(t, x, τ) = ∂xv
0
(1/2)(x)− k0(x) + k(x− t, τ), (47)

where v0(1/2) and k0 are the initial data of v(1/2) and k respectively. Then, we have to
introduce the following spaces.

Definition 3.6. For s ∈ R, we define the Hilbert spaces ∂xH
s(R) as

∂xH
s(R) =

{
k ∈ Hs−1(R), k = ∂xk̃ with k̃ ∈ Hs(R)

}
,

and k̃ is denoted ∂−1x k in the following. In the same way, we define ∂2xH
s(R).

Then, if we assume that k(·, τ) ∈ ∂xHs(R) for all τ ∈ [0, T ], we have

v(1/2)(t, x, τ) = v0(1/2)(x)− ∂−1x k0(x) + ∂−1x k(x− t, τ),

Furthermore, from R1
(1) = R2

(1) = 0, if we denote w± = ζ(1) ± u(1) we get

(∂t + ∂x)w+ +

(
2∂τk + 3k∂ξk +

1

3
∂3ξk − ∂−1ξ k

)
(x− t, τ)−

(
v0(1/2) − ∂

−1
ξ k0

)
(x) = 0,

(∂t − ∂x)w− +

(
k∂ξk −

1

3
∂3ξk + ∂−1ξ k

)
(x− t, τ) +

(
v0(1/2) − ∂

−1
ξ k0

)
(x) = 0.

(48)
The following lemma (Lemma 7.6 in [17]) is the key point to control u and v.

Lemma 3.7. Let c1 6= c2. Let k1, k2, k3 ∈ L2(R) with k2 = K ′2 and K2 ∈ L2(R). We
consider the unique solution k of{

(∂t + c1∂x)k = k1(x− c1t) + k2(x− c2t) + k3(x− c2t),
k|t=0 = 0.

Then, lim
t�∞

∣∣1
t k(t, ·)

∣∣
2

= 0 if and only if k1 ≡ 0 and in that case

|k(t, ·)|2 ≤
C

|c1 − c2|

(
|K2|2

t

1 + t
+ |k3|H2

t

1 +
√
t

)
.
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Then, in order to avoid a linear growth for the solution of (48), we also have to impose
that

∂τk +
3

2
k∂ξk +

1

6
∂3ξk =

1

2
∂−1ξ k, (49)

which is the Ostrovsky equation. Before giving a full justification of the Ostrovsky
equation, we need a local wellposedness result of this equation. The following proposition
is a generalization of Theorem 2.1 in [23] and Theorem 2.6 in [35] (see also [22] for weak
solutions).

Proposition 3.8. Let s > 7
4 and k0 ∈ ∂xHs(R). Then, there exists a time T > 0 and a

unique solution k ∈ C ([0, T ]; ∂xH
s(R))) to the Ostrovsky equation (49) and one has∣∣∣∂−1ξ k(t, ·)
∣∣∣
Hs
≤ C

(
T,
∣∣∣∂−1ξ k0

∣∣∣
Hs

)
.

Moreover, if s ≥ 3, k0 ∈ ∂2xHs+1(R), k ∈ C
(
[0, T ]; ∂2xH

s+1(R))
)

and one has∣∣∣∂−2ξ k(t, ·)
∣∣∣
Hs+1

≤ C
(
T,
∣∣∣∂−2ξ k0

∣∣∣
Hs+1

)
.

Proof. We only prove the second point of the Proposition. We denote by S(t) the semi-
group of the linearized Ostrovsky equation

∂τk +
1

6
∂3ξk −

1

2
∂−1ξ k = 0,

and it is easy to check that this semi-group acts unitary on Hs(R). We denote k̃ = ∂τk.
Then, k̃ satisfies the equation

∂τ k̃ +
3

2
∂ξ

(
k̃k
)

+
1

6
∂3ξ k̃ −

1

2
∂−1ξ k̃ = 0.

Using the Duhamel’s formula we obtain

∂−1ξ k̃(t, ·) = S(t)∂−1ξ k̃0 +
3

2

∫ t

0
S(t− s)

(
kk̃
)

(s, ·)ds.

Since ∂−1ξ k̃0 = −3
4k

2
0 − ∂2ξk0 + ∂−2ξ k0 ∈ L2(R), we get the result since we have

1

2
∂−2ξ k = ∂−1ξ ∂τk +

3

4
k2 +

1

6
∂2ξk.

Notice that contrary to the KdV equation, we can not expect a global existence. We
can now give the main result of this part.
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Theorem 3.9. Let k0 ∈ ∂2xH10(R), such that 1 + εk0 ≥ hmin > 0, v0 ∈ ∂xH6(R) and
µ0 > 0. Then, there exists a time T > 0, such that for all 0 < µ ≤ µ0, we have

(i) a unique classical solution (ζB, uB, vB) of (43) with initial data
(
k0, k0,

√
µv0
)

on[
0, Tµ

]
.

(ii) a unique classical solution k of (49) with initial data k0 on [0, T ].

(iii) If we define (ζOst, uOstr) (t, x) = (k(x− t, µt), k(x− t, µt)) we have the following
error estimate for all 0 ≤ t ≤ T

µ ,

|(ζB, uB)− (ζOst, uOst)|L∞([0,t]×R) ≤ C
(

(1 +
√
µt)

µt

1 + t
+ µ

3
2 t

)
where C = C

(
T, 1

hmin
, µ0,

∣∣∂−2x k0
∣∣
H10 ,

∣∣∂−1x v0
∣∣
H6

)
.

Proof. In all the proof, C will be a constant as in the theorem. The first and second
point follow from Corollary 2.17 and 3.8. In order to get the error estimate, we have to
control the remainders R1, R2, R3, defined in (46). First, using Lemma 3.7, the fact that
we can express the quantities 1

2∂ξk
2 − 1

3∂
3
ξk, ∂−1ξ k and v0 as derivatives with respect to

x and the fact that k satisfies the Ostrovsky equation (49), we have∣∣ζ(1)∣∣2 +
∣∣u(1)∣∣2 ≤ C t

1 + t
.

But we can also control all the derivatives with respect to τ or x of u and v be differen-
tiating (48). Hence, we get a control for the remainders R1 and R2. For R3, we use the
fact that v = ∂−1x k. We finally, obtain

|R1|H2 + |R2|H2 + |R3|H2 ≤ C
(

t

1 + t
+ µt+ 1

)
,

Then, thanks to Proposition 2.18 and remark 2.14, we get

|(ζB, uB, vB)− (ζapp, uapp, vapp)|L∞([0,t]×R) ≤ Cµ
3
2 t

(
t

1 + t
+ µt+ 1

)
.

Moreover, we have

|(ζapp, uapp)− (ζOst, vOst)|L∞([0,t]×R) ≤ µ
t

1 + t
.

Then, the result follows easily.

This theorem, combined with Theorem 2.19, shows that the solutions of the water waves

equations (14) is well approximated over times O
(

1√
µ

)
with an accuracy of order O (µ)

by the Ostrovsky approximation if we have a small Coriolis forcing. The approach we
develop here is similar to the one of the KP equations (see for instance [19], [1] or Part
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7.2.1 in [17]). The fact that k0 ∈ ∂xH8 is essential and physical since a solution of the
Ostrovsky equation has to be mean free. However, we suppose here that k0 ∈ ∂2xH9(R)
and v0 ∈ ∂xH5(R) which is more restrictive. In fact, using the strategy developed in [2]
for the KP approximation we can hope to release this assumption. Finally, notice that
contrary to the KdV equation, the Ostrovsky equation does not admit solitons ([38],
[9]).

3.3 Very weak rotation, the KdV equation

As we said before, without Coriolis forcing, it is well-known, that the KdV equation is
a good approximation of the water waves equations. In this part we show that if ε

Ro is
small enough, we get the KdV equation as an asymptotic model. We recall the KdV
equation

∂τk +
3

2
k∂ξk +

1

6
∂3ξk = 0. (50)

Inspired by [10], we show that ε
Ro = O(µ) is sufficient. we consider the asymptotic

regime

AKdV =
{

(ε, β, γ, µ,Ro) , 0 ≤ µ ≤ µ0, ε = µ, β = γ = 0,
ε

Ro
= µ

}
. (51)

Then, the Boussinesq-Coriolis equations become (see Remark 2.14)
∂tζ + ∂x ([1 + µζ]u) = 0,(

1− µ

3
∂2x

)
∂tu+ ∂xζ + µu∂xu− µv = 0,

∂tv + µu∂xv + µu = 0.

(52)

Proceeding as in the previous part, we seek an approximate solution (ζapp, uapp, vapp) of
(52) under the form

ζapp(t, x) = k(x− t, µt) + µζ(1)(t, x, µt),

uapp(t, x) = k(x− t, µt) + µu(1)(t, x, µt),

vapp(t, x) = µv(1)(t, x, µt).

(53)

Then, we plug the ansatz in Sytem (52) and we get

∂tζapp + ∂x ([1 + µζapp]uapp) = µR1
(1) + µ2R1,(

1− µ

3
∂2x

)
∂tuapp + ∂xζapp + µuapp∂xuapp − µvapp = µR2

(1) + µ2R2,

∂tvapp + µuapp∂xvapp + µuapp = µR3
(1) + µ2R3,

(54)

where
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R1
(1) = ∂tζ(1) + ∂xu(1) + ∂τk + 2k∂ξk,

R2
(1) = ∂tu(1) + ∂xζ(1) + ∂τk +

1

3
∂3ξk + k∂ξk,

R3
(1) = ∂tv(1) + k,

and

R1 = ∂τζ(1) + ∂x
(
ku(1) + kζ(1) + µζ(1)u(1)

)
,

R2 = ∂τu(1) −
1

3
∂3ξ∂τk −

1

3
∂2x∂tu(1) − µ

1

3
∂2x∂τu(1) + ∂x

(
ku(1)

)
+ µu(1)∂xu(1) − v(1),

R3 = ∂τv(1) + µ
(
k + µu(1)

)
∂xv(1) + u(1).

Remark 3.10. We should also add v(0)(t, x, µt) to the ansatz (53) for vapp. However,
if we plug it in System (52) we get ∂tv(0) = 0 which leads to v(0) = 0 if the quantity is
initially zero. Hence, we make this assumption in the following.

As before, we assume that R1
(1)(t, x, τ) = R2

(1)(t, x, τ) = R3
(1)(t, x, τ) = 0 for all x ∈ R,

t ∈
[
0, Tµ

]
and τ ∈ [0, T ] which leads to v(1) = v0(1) − ∂

−1
x k0 + ∂−1x k and, if we denote

w± = ζ(1) ± u(1) we get

(∂t + ∂x)w+ +

(
2∂τk + 3k∂ξk +

1

3
∂3ξk

)
(x− t, τ) = 0,

(∂t − ∂x)w− +

(
k∂ξk −

1

3
∂3ξk

)
(x− t, τ) = 0

and to avoid a linear growth of u or v we need that k satisfies (50). We also have an
existence result for the KdV equation (see for instance [16]).

Proposition 3.11. Let s ≥ 1, k0 ∈ Hs(R) and T > 0. Then, there exists a unique
solution to the KdV equation (50) k ∈ C ([0, T ];Hs(R))) and one have

|k|Hs ≤ C (T, |k0|Hs) .

Moreover, if s ≥ 2 and k0 ∈ ∂xHs+1(R), k ∈ C
(
[0, T ]; ∂xH

s+1(R))
)

and we have∣∣∂−1x k
∣∣
Hs+1 ≤ C

(
T,
∣∣∂−1x k0

∣∣
Hs+1

)
.

Then, proceeding as in the previous part, we obtain the following theorem.

Theorem 3.12. Let k0 ∈ ∂xH9(R), such that such that 1+εk0 ≥ hmin > 0, v0 ∈ H5(R)
and µ0 > 0. Then, there exists a time T > 0, such that for all 0 < µ ≤ µ0, we have

(i) a unique classical solution (ζB, uB, vB) of (52) with initial data
(
k0, k0, µv0

)
on[

0, Tµ

]
.
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(ii) a unique classical solution k of (50) with initial data k0 on [0, T ].

(iii) If we define (ζKdV , uKdV ) (t, x) = (k(x− t, µt), k(x− t, µt)) we have the following
error estimate for all 0 ≤ t ≤ T

µ ,

|(ζB, uB)− (ζKdV , uKdV )|L∞([0,t]×R) ≤ C
(

µt

1 + t
+ µ2t

)
where C = C

(
T, 1

hmin
, µ0,

∣∣∂−1x k0
∣∣
H9 ,

∣∣v0∣∣
H5

)
.

This theorem, combined with Theorem 2.19, shows that the solutions of the water waves

equations (14) is well approximated over times O
(

1
µ

)
with an accuracy of order O (µ)

by the KdV approximation if we have a very small Coriolis forcing. Notice that con-
trary to the irrotational case, the transverse velocity v is not zero (also noticed in [10]).
Furthermore, in our situation, the initial data for the KdV equation has to be of zero
mean which means that we can not expect the propagation of solitons on a large time
(they have a constant sign) if ε

Ro and µ have the same order.

4 Green-Naghdi equations for γ = 0 and β = O (µ)

This part is devoted to the derivation and justification of the Green-Naghdi equations
(62) under a Coriolis forcing, with γ = 0 and for small amplitude topography variations
(β = O(µ)). The Green-Naghdi equations are originally obtained in the irrotational
framework under the assumption that µ is small (no assumption on ε) and by neglecting
all the terms of order O(µ2) in the water waves equations (see for instance [32] or Part
5.1.1.2 in [17]). It is a system of two equations on the surface ζ and the averaged
horizontal velocity V. These equations were generalized in [4] in presence of vorticity
but without a Coriolis forcing. This new system is a cascade of equations that involves
a second order tensor and a third order tensor. After deriving these equations, we show
that they are an order O(µ2) approximation of the water waves equations. We consider
the asymptotic regime for the 1D Green-Naghdi equations

AGN =
{

(ε, β, γ, µ,Ro) , 0 ≤ µ ≤ µ0, 0 ≤ ε,
ε

Ro
≤ 1, β = O (µ) , γ = 0

}
. (55)

The next subsection is devoted to extending Proposition 2.8 and 2.9.

4.1 Improvements for the equations of Qx and Qy

We start by extending Proposition 2.8.

Proposition 4.1. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then Qx sat-

isfies the following equation
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∂tQx + εu∂xQx + εQx∂xu+
ε

Ro
√
µ

(v − v) =− ε√µ1

h
∂x

∫ εζ

−1+βb
(u∗sh)2

+ ε
√
µQx∂xQx + εµ

1

3
∂x
(
h2Qx∂

2
xu
)

+ εµ
1

6
h2u]∂3xu+ εµ

1

8h
∂x

(
h3u]

)
∂2xu

+ εmax
(
β
√
µ, µ

3
2

)
R,

and u∗sh satisfies the equation

∂tu
∗
sh + εu∂xu

∗
sh + εu∗sh∂xu+

ε

Ro
√
µ

(v − v) =ε
√
µ

1

h
∂x

∫ εζ

−1+βb
(u∗sh)2 − ε√µu∗sh∂xu∗sh

+ ε∂x

(∫ z

−1+βb
[u+

√
µu∗sh]

)
∂zu
∗
sh

+ εµR.

Proof. Using the second equation of the vorticity equation of the Castro-Lannes system
(14), we have

∂tωy + εu∂xωy +
ε

µ
w∂zωy = εωx∂xv +

ε
√
µ
ωz∂zv +

ε

Ro
√
µ
∂zv.

Since ωx = − 1√
µ∂zv and ωz = ∂xv we notice that εωx∂xv + ε√

µωz∂zv = 0. Using

Proposition 2.5 we get

∂tωy+εu∂xωy−ε∂x [(1+z−βb)u] ∂zωy−
ε

Ro
√
µ
∂zv+ε

√
µA1+εµA2 = εmax

(
µ

3
2 , β
√
µ
)
R,

where

A1 = u∗sh∂xωy − ∂x
(∫ z

−1+βb
u∗sh

)
∂zωy,

A2 = −1

2

(
[1 + z − βb]2−h

2

3

)
∂2xu∂xωy+

1

2
∂x

(∫ z

−1+βb

(
[1 + z − βb]2 − h2

3

)
∂2xu

)
∂zωy.

Then, integrating with respect to z, using the fact that ∂tζ + ∂x (hu) = 0 and ush =

−
∫ εζ
z ωy, we get

∂tush + εu∂xush + εush∂xu+
ε

Ro
√
µ

(v − v) =ε∂x [(1 + z − βb)u] ∂zush + ε
√
µ

∫ εζ

z
A1

+ εµ

∫ εζ

z
A2 + εmax

(
µ

3
2 , β
√
µ
)
R.
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Integrating again with respect to z, using the fact that ∂tζ + ∂x (hu) = 0 and Qx = u∗sh,
we obtain

∂tQx + εu∂xQx + εQx∂xu+
ε

Ro
√
µ

(v − v) =ε
√
µ

1

h

∫ εζ

−1+βb

∫ εζ

z
A1

+εµ
1

h

∫ εζ

−1+βb

∫ εζ

z
A2 +εmax

(
µ

3
2 , β
√
µ
)
R.

The end of the proof is devoted to the computation of the others terms. We have∫ εζ

z
A1 =

∫ εζ

z
u∗sh∂xωy − ∂x

(∫ z

−1+βb
u∗sh

)
∂zωy

=

∫ εζ

z
∂x (u∗shωy)− εζQxωy + ∂x

(∫ z

−1+βb
u∗sh

)
ωy.

Since ωy = ∂zu
∗
sh, we obtain∫ εζ

z
A1 = Qx∂xQx − u∗sh∂xu∗sh + ∂x

(∫ z

−1+βb
u∗sh

)
∂zu
∗
sh.

then, integrating again with respect to z, we obtain

1

h

∫ εζ

−1+βb

∫ εζ

z
A1 = Qx∂xQx −

1

h
∂x

∫ εζ

−1+βb
(u∗sh)2 .

Furthermore, we have∫ εζ

z
A2 = −1

2

∫ εζ

z

([
1 + z′ − βb

]2 − h2

3

)
∂2xu∂xωy

+
1

2

∫ εζ

z
∂x

(∫ z

−1+βb

([
1 + z′ − βb

]2 − h2

3

)
∂2xu

)
∂zωy

= −1

2

∫ εζ

z
∂x

[([
1 + z′ − βb

]2 − h2

3

)
∂2xuωy

]
− ε∂xζ

h2

3
∂2xuωy

− 1

2
∂x

(∫ z

−1+βb

([
1 + z′ − βb

]2 − h2

3

)
∂2xu

)
ωy.

Since ωy = ∂zu
∗
sh, we obtain

∫ εζ

z
A2 =

∫ εζ

z
∂x
([

1 + z′ − βb
]
∂2xuu

∗
sh

)
+

1

2
∂x

(([
1 + z′ − βb

]2 − h2

3

)
∂2xuu

∗
sh

)
− 1

2
∂x

(∫ z

−1+βb

([
1 + z′ − βb

]2 − h2

3

)
∂2xu

)
∂zu
∗
sh

+
1

3
∂x
(
h2∂2xuQx

)
− ε∂xζh∂2xuQx.
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Then we integrate again with respect to z and we divide h. We obtain

1

h

∫ εζ

−1+βb

∫ εζ

z
A2 =

1

h

∫ εζ

−1+βb

∫ εζ

z
∂x
([

1 + z′ − βb
]
∂2xuu

∗
sh

)
+

1

2h

∫ εζ

−1+βb
∂x

(([
1 + z′ − βb

]2 − h2

3

)
∂2xuu

∗
sh

)
+

1

2h

∫ εζ

−1+βb
∂x

(([
1 + z′ − βb

]2 − h2

3

)
∂2xu

)
u∗sh

+
1

3
∂x
(
h2∂2xuQx

)
− 4

3
h∂xh∂

2
xuQx + βR.

Then, using the fact that∫ εζ

−1+βb

∫ εζ

z

∫ z′

−1+βb
∂xu

∗
sh = ∂x

∫ εζ

−1+βb

∫ εζ

z

∫ z′

−1+βb
u∗sh + βR,

we finally get

1

h

∫ εζ

−1+βb

∫ εζ

z
A2 =

1

3
∂x
(
h2Qx∂

2
xu
)

+
1

6
h2u]∂3xu+

1

8h
∂x

(
h3u]

)
∂2xu+ βR,

and the first equation follows. The second equation follows similarly using the fact that
u∗sh = ush −Qx.

We can also extend Proposition 2.9.

Proposition 4.2. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then Qx sat-

isfies the following equation

∂tQy + εu∂xQy+ εQx∂xv +
ε

Ro
√
µ

(u− u) = ε
√
µQx∂xQy − ε

√
µ

1

3
h2∂2xu∂xv

− ε√µ1

h
∂x

(∫ εζ

−1+βb
u∗shv

∗
sh

)
− εµ (∂xh)2 Qx∂xv + εµ

h2

3
∂2xu∂xQy

− εµ 1

24h
∂2x

(
h3u]

)
∂xv + εµ

1

24h
∂x

(
h3v]∂2xu

)
+ εmax

(
µ

3
2 , β
√
µ
)
R,

and v∗sh satisfies the equation
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∂tv
∗
sh + εu∂xv

∗
sh + εu∗sh∂xv +

ε

Ro
√
µ

(u− u) =ε
√
µ

1

h
∂x

(∫ εζ

−1+βb
u∗shv

∗
sh

)
− ε√µu∗sh∂xv∗sh

+ ε∂x

(∫ z

−1+βb
[u+

√
µu∗sh]

)
∂zv
∗
sh

+ ε
√
µ

1

2

(
[1 + z − βb]2 − h2

3

)
∂2xu∂xv

+ ε (µ, β
√
µ)R.

Proof. Using the first equation of the vorticity equation of the Castro-Lannes system
(14), we have

∂tωx + εu∂xωx +
ε

µ
w∂zωx = εωx∂xu+

ε
√
µ
ωz∂zu+

ε

Ro
√
µ
∂zu.

Then, using the fact that ∇µ,0 · ω = 0 and ∇µ,0 ·Uµ,γ = 0, we get

∂tωx −
ε
√
µ
∂z (uωz) +

ε

µ
∂z (wωx) =

ε

Ro
√
µ
∂zu.

then, we integrate with respect to z and, using the fact that ∂tζ − 1
µUµ · Nµ,0 = 0,

ωx = − 1√
µ∂zv and ωz = ∂xv, we obtain

∂t

(∫ εζ

−1+βb
ωx

)
− ε
√
µ
u∂xv +

ε
√
µ
u∂xv +

ε

µ
3
2

w∂zv +
ε

Ro
√
µ

(u− u) = 0.

Then, we integrate again with respect to z and, using Proposition 2.4 and the fact that
∂tζ − 1

µUµ ·Nµ,0 = 0, Uµ
b ·N

µ,0
b = 0, and ∇µ,0 ·Uµ = 0, we get

∂tQy −
ε
√
µ
u∂xv +

ε
√
µ

1

h
∂x

(∫ εζ

−1+βb
uv

)
+

1
√
µh
∂thv +

ε

Ro
√
µ

(u− u) = 0.

Then, thanks to Propositions 2.3, 2.4 and 2.5 we finally obtain that

∂tQy+εu∂xQy+εQx∂xv+
ε

Ro
√
µ

(u−u)= ε
√
µQx∂xQy − ε

√
µ

1

3
h2∂2xu∂xv

− ε√µ1

h
∂x

(∫ εζ

−1+βb
u∗shv

∗
sh

)
+ εµTu∗sh∂xv + εµ

h2

3
∂2xu∂xQy

+ εµ
1

2h
∂x

(∫ εζ

−1+βb
v∗sh

(
[1 + z − βb]2 − h2

3

)
∂2xu

)
+ εmax

(
µ

3
2 , β
√
µ
)
R.
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Finally, we can compute that

1

2

∫ εζ

−1+βb
v∗sh

(
[1 + z − βb]2 − h2

3

)
=

1

24
h3v],

and the first equation follows from Lemma 2.7. The second equation follows similarly
using the fact that v∗sh = vsh −Qy.

As noticed in [4], the quantity E defined by

E =

(
Exx Exy
Exy Eyy

)
=

∫ εζ

−1+βb
V∗sh ⊗V∗sh (56)

appears in the equations of Qx and Qy and can not be express with respect to ζ, V and

V]. The following subsection is devoting to giving an equation for E.

4.2 Equations for E

In this part, we derive an equation for E up to terms of order O(µ). We have to introduce
the quantity F

F = (Fijk)i,j,k =

∫ εζ

−1+βb
V∗sh ⊗V∗sh ⊗V∗sh. (57)

The following proposition gives an equation for E.

Proposition 4.3. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then E satisfies

the following equation

∂tE+εu∂xE + εl
(
E, ∂xV

)
+ε
√
µ∂xF·,·,1+

ε

Ro
ES =

(
ε
√
µ∂xv +

ε
√
µ

Ro

)
D(V], u)

+ max
(
εµ, εβ

√
µ,

ε

Ro
µ
)
R,

where

ES =

∫ εζ

−1+βb
V⊥sh ⊗Vsh + Vsh ⊗V⊥sh =

(
−2Exy Exx − Eyy

Exx − Eyy 2Exy

)
(58)

l
(
E, ∂xV

)
=

(
3∂xuExx + 2∂xvExy 2∂xuExy + ∂xvEyy
2∂xuExy + ∂xvEyy ∂xuEyy

)
(59)

and

D(V], u) = ∂2xu

(
0 u]

u] 2v]

)
. (60)

36



Proof. The proof is similar to the computation in Part 4.5.2 and Part 5.4.1 in [4]. We
compute ∂tE and we use the second equations of Propositions 4.1 and 4.2 up to terms
of order O(µ). For the Coriolis contribution, we use the expansion of u and v given in
Proposition 2.5 and 2.4.

The quantity F appears in the equation of E and can not be expressed with respect to
ζ, V, V] and E. The next proposition gives an equation for F up to terms of order
O(
√
µ).

Proposition 4.4. If
(
ζ,Uµ,0

� ,ω
)

satisfy the Castro-Lannes system (14), then Fijk sat-

isfies the following equation

∂tFijk + ε(u∂xFijk + ∂xuFijk + F1kj∂xVi + Fi1k∂xVj + Fij1∂xVk)+
ε

Ro
FS =

max
(
ε,

ε

Ro

)√
µR,

where

FS =

∫ εζ

−1+βb
V⊥sh ⊗Vsh ⊗Vsh + Vsh ⊗V⊥sh ⊗Vsh + Vsh ⊗Vsh ⊗V⊥sh. (61)

Proof. The proof is similar to the computation in Part 4.5.3 and Part 5.4.2 in [4]. We
compute ∂tF and we use the second equations of Propositions 4.1 and 4.2 up to terms
of order O(

√
µ). For the Coriolis contribution, we use the expansion of u and v in

Proposition 2.5 and 2.4.

4.3 The Green-Naghdi equations

We can now establish the Green-Naghdi equations when d = 1. The Green-Naghdi
equations are the following system



∂tζ + ∂x (hu) = 0,

(1+µT)(∂tu+εu∂xu)+∂xζ−
ε

Ro
v+εµQ(u)+εµ∂xExx+εµ

3
2 C1
(
u], u

)
+

ε

Ro

µ
3
2

24h
∂2x(h3v]) = 0,

∂tv + εu∂xv +
ε

Ro
u+ εµ∂xExy + εµ

3
2 C2

(
v], ∂2xu

)
= 0,

∂tV
] + εV]∂xu+ εu∂xV] +

ε

Ro
V]⊥ = 0,

∂tE+εu∂xE + ε l
(
E, ∂xV

)
+ ε
√
µ∂xF·,·,1 +

ε

Ro
ES =

(
ε
√
µ∂xv+

ε

Ro

√
µ
)
D(V], u),

∂tFijk + εu∂xFijk + ε∂xuFijk + εF1kj∂xVi + εFi1k∂xVj + εFij1∂xVk +
ε

Ro
FS = 0.

(62)

where
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T = − 1

3h
∂x
(
h3∂x·

)
,

Q(u) =
2

3h
∂x

(
h3 [∂xu]2

)
,

C1
(
u], u

)
= − 1

6h
∂x

(
2h3u]∂2xu+ ∂x(h3u])∂xu

)
,

C2
(
v], w

)
= − 1

24h
∂x

(
h3v]w

)
,

l
(
E, ∂xV

)
=

(
3∂xuExx + 2∂xvExy 2∂xuExy + ∂xvEyy
2∂xuExy + ∂xvEyy ∂xuEyy

)
,

D(V], u) = ∂2xu

(
0 u]

u] 2v]

)

(63)

and

ES =

∫ εζ

−1+βb
V⊥sh ⊗Vsh + Vsh ⊗V⊥sh =

(
−2Exy Exx − Eyy

Exx − Eyy 2Exy

)
,

FS =

∫ εζ

−1+βb
V⊥sh ⊗Vsh ⊗Vsh + Vsh ⊗V⊥sh ⊗Vsh + Vsh ⊗Vsh ⊗V⊥sh,

(64)

and V] is defined in (29), E in (56) and F in (57). Notice that the first, the second and
the third equations of System (62) are the classical Green-Naghdi equations with new
terms due to the vorticity (terms with V] and E). The last equations are important
to get a close system. We can now state that the Green-Naghdi equations are an order
O(µ2) approximation of the water waves equations.

Proposition 4.5. In the Green-Naghdi regime with small topography variations AGN,
the Castro-Lannes equations (14) are consistent at order O(µ2) with the Green-Naghdi
equations (62) in the sense of Definition 1.4.

Proof. The proof is similar to the one in Proposition 2.12. The first equation of the
Green-Naghdi equations is always satisfied for a solution of the Castro-Lannes formula-
tion by Proposition 2.3. For the second equation, we use Proposition 2.5, Proposition 4.1
together with Proposition 2.6, Lemma 2.7 and Proposition 2.10. Notice the fact that all
the terms with Qx disappear. The third equation follows from Proposition 2.4, 2.5 and
4.2 (all the terms with Qy also disappear). The last equations follows from Propositions
2.10, 4.3 and 4.4.

Remark 4.6. Notice that even without a Coriolis forcing, we can not decrease the num-
ber of equations in the previous Green-Naghdi equations. However, if one also suppose
that the vorticity is initially of the form (0, ωy, 0)t, which corresponds to the propagation
of 2D water waves, we can significantly simplify the Green-Naghdi equations (See Section
4 in [4] and [18]).
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4.4 A simplified model in the case of a weak rotation and medium
amplitude waves

As noticed in [4], if we assume that ε = O(
√
µ) we can simplify the Green-Naghdi

equations. This regime corresponds to medium amplitude waves (in the terminology
of [17]). We also assume that ε

Ro = O(
√
µ). Then, we can simplify the Green-Naghdi

system (62) by dropping all the terms of O(µ2) and we get

∂tζ + ∂x (hu) = 0,

(1 + µT ) (∂tu+ εu∂xu) + ∂xζ −
ε

Ro
v + εµQ(u) + εµ∂xExx = 0,

∂tv + εu∂xv +
ε

Ro
u+ εµ∂xExy = 0,

∂tE + εu∂xE + ε l
(
E, ∂xV

)
+

ε

Ro
ES = 0.

(65)

Notice that in this regime, we catch effects of the vorticity on V thanks to the second
order tensor E. Without vorticity, this regime is particularly interesting since it is related
to the Camassa-Holm equation and the Degasperis-Procesi equation (see for instance [6]).
It could be interesting to understand how we can adapt these two scalar equations in
presence of a Coriolis forcing.
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